NEIPA do's and don'ts

Australia & New Zealand Homebrewing Forum

Help Support Australia & New Zealand Homebrewing Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.
Jean-Claude Tetreault, Co-Founder of Trillium Brewing in Massachusetts
JC-Trillium.jpeg

We are lucky to have relatively low mineral content water in our local watershed, which allows us to dial in the total mineral content. Our chloride and sulfates ratio to roughly 2:1, but maintain low levels of total dissolved solids and sufficient calcium for yeast health.

Our recipe design process has changed over the years. Our earliest hoppy beers contained very little unmalted or flaked grain. Since early days, we have explored this quite a bit and we have found great success with them primarily in higher gravity beers. We also lean on lots of other ways to enhance body and mouthfeel, such as through the mash schedule and temperatures. We also used to have approximate 30% of our total hop charges go in hot-side, but now we are closer to 90–95% on the cold-side. Given the massive hop bills in these beers and measured IBUs and perceived bitterness impact from dry hop charges paired with disproportionately high aroma and flavor impact from cold-side additions, we shifted these additions to the dry hop over the years.

We tend to get these dry hop additions in at the tail end of fermentation to ensure the best balance of being able to harvest healthy yeast and getting intense and reliable bioconversion of flavor and aromatic compounds. We have a sliding scale of maximum dry hop charges based on gravity . . . but we’ve got well over 10 lbs./bbl (5 oz. per gallon/37 grams per L) on some triple and quadruple IPAs and we definitely see a commensurate impact of intensity of character.

GalaxyTM, Citra®, and Mosaic® are the far and away favorite hop varieties for now. There are some (i.e. Sabro® and Strata®) that are distinctively unique and have both the quality and intensity that we value. There are also incredible new experimental varieties in the pipeline that will stand shoulder to shoulder or even exceed the current favorites.

When it comes to yeast there are many strains from different yeast houses that can provide varying levels of bioconversion, clarity of hop strain, and reliability. We’ve explored the vast majority of them and there is no perfect option, so we will use different strains for different beers to achieve the desired impact. Given the range, start with the recommendation from experienced homebrewers in your club or internet forum and go from there. I wouldn’t recommend underpitching, so I’d say to closely follow the pitching rates based on gravity. We stick to the range of fermentation temperatures the lab recommends and sometimes will ramp up the tail end if necessary for a higher gravity beer.

Oxidation is probably the #1 killer for homebrewed NEIPAs! I’d be hard pressed to recommend someone attempt the style if they don’t have a kegging setup as oxidation will quickly destroy these beers and you’ll end up disappointed. Fully CO2 purging vessels (or filling with sanitizer/water and pushing out with CO2) will ensure acceptable oxygen levels. None of that matters though if you can’t keep these beers cold post dry hop. We’ve done some extensive accelerated aging tests with our quality team that shows that warmer temperatures are markedly more detrimental than oxygen levels just above the specification on our packaging quality parameters than if they were stored cold

Dave Bombard, Co-Founder and Brewer of Green Empire Brewing in Colchester, Vermont
89054309_1037179946662126_5551705130883088384_o.jpg

On most of our hoppy beers, we tend to favor a water profile that falls in the 0.6–0.8 SO4/Cl range. To achieve this, we usually use gypsum (CaSO4) and a house-made CaCl2 solution but we pay close attention to calcium (keeping levels under 110 ppm) to maintain softness on the profile. While I don’t think general water chemistry will overall make or break a beer, it is one of those elements that when dialed in, can turn a good beer into a great beer.

We love using flaked oats, flaked barley, and flaked wheat in many of our IPAs. We find they are all great for increasing our head retention and creating nice creamy character that we find desirable in most of our beers. The biggest drawback of these, especially in larger amounts, is lautering ability. We’ve definitely stuck a few sparges when exceeding 20% of these flaked additions in our mash, but using rice hulls can make these sparges go much smoother.

We go back and forth on boil vs. post-boil hop additions depending on the beer. While we love a lot of these low-IBU NEIPAs and do make a few of them, we often prefer a degree of balanced bitterness. Most of our hoppy beers tend to fall in the 50–80 IBU range, which seems higher than a lot of other NEIPAs nowadays. We do employ a lot of heavy whirlpool hop additions, but we are fans of kettle hopping. For every beer we make, we utilize hop additions at the beginning of our boil to create a foundation of bitterness that we enjoy in our beer. We also often add small additions in the last 5–20 minutes of our boil to help layer the complexity of the hop flavors, and to achieve higher levels of bitterness than we could achieve from whirlpool hopping alone.

The majority of our hop additions are added in the fermenter. We’ve experimented with quite a range from 1 lb./bbl to 7.5 lbs./bbl (0.5.–3.75 oz. per gallon/3.7–28 g per L) of total dry hop additions. We often add dry hops during the tail end of primary fermentation, and again at fermentation temperatures after fermentation completes to minimize some of the more vegetal flavors that can come from adding hops at lower temperatures. We have also experimented with varied methods of dry hop contact ranging from pouring in the top of our fermenter and resting for a few days, to recirculating hops. At this time, we really enjoy a “continual rousing” method, as pumps seem vulnerable to loose seals and the risk of picking up oxygen during recirculation terrifies me. When we dry hop, we will add hops through the top of our fermenter, then over 2–3 days we will usually rouse the tank with CO2 directly through our racking arm several times a day to ensure as much contact with the liquid as possible.

I find dry hopping rates to be ABV-dependent. For instance, if brewing a 4–5% session beer, we have definitely found that “double dry hopping” or even dry hopping over 3 lbs./bbl (1.5 oz. per gallon/11 g per L) can lend to really undesirable green and vegetal flavors that are extremely difficult to tame even after extended conditioning time in the tank. With that being said, we’ve gone as high as 7.5 lbs./bbl (3.75 oz. per gallon/28 g per L) on batches of double IPA with extremely pleasing results. At the end of the day, it really depends on the beer you have in the tank. As a rule, we never try to rush our beer to fit a schedule. We are always happy to let a beer crash out in a tank a few extra days to let it reach prime drinkability when packaged.

Generally speaking, we favor hops that fall into the tropical fruit spectrum with bits of dankness and pine included. We try to avoid lots and varietals that fall more into the realm of deep earthy, spicy, oniony characteristics, although occasionally we do desire some of these notes in the balance. We also really enjoy using Cryo® hops on the hot- and cold-side due to the decreased plant matter. Also, we usually favor looser packed T-90 pellets vs. the tighter packed pellets as we find them to disperse more effectively into our beer during whirlpool and dry hopping. In regards to hop combinations, you’d have to be crazy to not love Citra®, Mosaic®, Simcoe®, etc. but we’ve really grown in love with Sabro®, El Dorado®, Strata®, and Idaho 7® specifically over the last year. We’ve also really enjoyed a number of the Southern Hemisphere varietals we’ve gotten our hands on, Motueka being an absolute favorite.

Don’t be afraid to play around with different hops, and don’t get caught up in idea of bittering vs. aroma hops. Everyone loves to use Citra®, GalaxyTM, and Mosaic®. But don’t limit yourself to these. There are a growing number of varietals, including experimentals available to homebrewers. Embrace this, and don’t be afraid to use them where you think they will best be expressed in your finished beer.

In my opinion, yeast is one of the major drivers that make the style what it is. We’ve used several strains in our IPAs, but you can never go wrong with Wyeast 1318 (London Ale III), or any of the other mirrored strains from other suppliers. I enjoy the fact that these strains have the perfect level of attenuation for the style, leaving behind just the right touch of sweetness. Often times we will also blend in some more traditional American ale strains for increased attenuation. We always raise our fermentation temperature from 69 °F (20.5 °C) to 71–72 °F (22 °C) after day three to minimize diacetyl.

I’ve debated this with brewer friends, but I’m also convinced that strain selection is a major contributor in the visual intrigue (haze) that people tend to gravitate toward in today’s IPA. We’ve definitely noticed that strains can express themselves differently and make varied contributions to how the end product appears in the glass. To test this, we’ve taken the same beer, pitched different strains of “IPA branded” yeast, and have noticed very different expressions of flavors, aromas, mouthfeel, and visual appearances. At the end of the day, I don’t believe hazy beer necessarily equals great beer by any means. I think its way more important to find a strain, or handful of strains, that will provide the expressions in the finished product that you, as the brewer, ultimately desire. Another suggestion for homebrewers is to always make a starter. As a homebrewer, pitches can often be stored in a variety of conditions and have some age behind them. Creating a starter prior to brewing really ensures that you will have the cell count and viability needed for a nice healthy fermentation. Wort oxygenation is huge in yeast health also. While harmful post-fermentation, adding oxygen pre-pitching is hugely important for fermentation and allowing the yeast to express itself properly in the finished beer!

As a former homebrewer, minimizing oxygen was my biggest weakness, and a major headache. I believe the biggest influx of oxygen for homebrewers is when transferring to a keg from the fermenter for force carbonation. Finding a way to devise a closed transfer is the best way to resolve this issue and maximize stability. For instance, before we were Green Empire, my partner and I used to ferment in 15.5-gallon (59-L) stainless steel sanke kegs. We eventually were able to devise a custom cap that we could attach to the opening of the keg via tri-clamp, and would allow us to siphon out of the keg into the “beer out” port on smaller pre-purged 5-gallon (19-L) Corny kegs via CO2 transfer. This was huge for creating longer stability for our brews, and as one friend called it, making them taste “less homebrewy.” I’m sure with some craftiness you could even devise a similar setup through the cover of a 6-gallon (23-L) pale. Prior to this, we were siphoning through the top opening of the Corny kegs, and as the weeks went on, we’d notice gradual development of off-flavors and discoloration. After tightening up this process, small things like purging the CO2 hose prior to connecting it for force carbonation, and purging growlers/kegs/bottles before filling them with beer are steps that can be easily forgotten but can be problematic for stability in homebrewed beer
 
That is a bit over the top. There would be a lot of wastage with this, considering you are getting diminishing returns over 8g/l according to research by Tom Shellhammer.
I wouldn't be hanging any hats on that data - or more specifically, I wouldn't be over-generalising the results of it.

A) It was performed with whole hops cones;
B) It was performed with just cascade;
C) The dry hop was 24 hours;
D) the grain bill was a 'base pale ale' below 5%

So, we have no idea if the results of dry hopping at rates above or below 8g/l will be different in our own beers if we were to:
- use pellet hops or cryo hops;
- use a variety other than cascade;
- dry hop for longer than 24 hours;
- dry hop a beer that is a high ABV, or has a different grain bill (more protein, etc).

We can also dispute the generalisability of that research by simply looking at dry hopping in commercial practice - many breweries are absolutely knocking beers out of the park with massive dry hops (>30g/L), and that these beers are clearly very different in terms of hop character/flavour/aroma to lower hopped beers, despite the fact that this research claims that it shouldn't make a positive difference (according to my interpretation of the research, it should make the aroma more herbal/tea-like)
 
Some good info here too: Verdant IPA Yeast - Home Brewing Competition

I agree, I think 8g/L is not really the correct number. I believe the breweries that are doing that these style of beers now have that number closer to 25g/L for IPAs. Put a beer dry hopped at 8g/l beside one at 25g/l and see if you can tell the difference. The higher the alcohol, the higher the hopping rate it can take too.

Some of the things I have had success with:
  • No mid ferment dry hop
  • D-rest towards the end of fermentation
  • Soft crash to 14 degrees (less chance of hop creep & more diacetyl)
  • Remove yeast
  • Dry hop usually around 16g/l for a 6.5% beer
  • Malted oats
  • Fully purged kegs (fill to the brim with sanitiser and push our with C02)
  • Dry hopping for 3 days total with a bit of agitation
  • low mash ph ~ 5.2 & boil ph ~ 5.0
  • keeping calcium levels lower by using sodium chloride (kosher salt) ~ 50ppm
  • splitting the salts so some go in the boil
Good luck!
 
Don't let @butisitart see, I think he's used a total of 37g of hops in all his beers combined!
i bought a kilo of dr rudi when i first started brewing and i'm down to the last 340gms. i use 2 pellets in a brew, if i want to make hoppy gick for my baby brother i might put 3 pellets in. more than that just wears the hop spider out.
 
The guys on the Craft Brewing Channel did a detailed two-part series on creating a NEIPA, can be found here & here with their recipe+method on their site. The reaction on their faces after tasting is just pure joy - they touch on some good ideas to limit oxidation at a homebrewer level with input from the head brewer at Verdant. Can't wait to give this one a crack!
 
The guys on the Craft Brewing Channel did a detailed two-part series on creating a NEIPA, can be found here & here with their recipe+method on their site. The reaction on their faces after tasting is just pure joy - they touch on some good ideas to limit oxidation at a homebrewer level with input from the head brewer at Verdant. Can't wait to give this one a crack!
dunno if this has done the rounds here, they make it just up the road from you, luxo. you tried it?? (swiss, i think)

um, yep, looks like it did the rounds about 5 years ago
 
dunno if this has done the rounds here, they make it just up the road from you, luxo. you tried it?? (swiss, i think)

um, yep, looks like it did the rounds about 5 years ago

I wish, was devastated when I found out this video was an April fools joke.
 
The guys on the Craft Brewing Channel did a detailed two-part series on creating a NEIPA, can be found here & here with their recipe+method on their site. The reaction on their faces after tasting is just pure joy - they touch on some good ideas to limit oxidation at a homebrewer level with input from the head brewer at Verdant. Can't wait to give this one a crack!
Their grain bill seems unnecessarily complex. It's a bit like they tried to get a bit of everything in there that they've read/been told helps.
Flaked and malted wheat? Wouldn't just one or the other be fine, especially in such a small amount?
What's the role of carapils?
Lastly, why have mostly maris otter, and then chuck some golden promise in? Again, would it really be any different if it was just one or the other? (spoiler alert: it almost certainly wouldn't be).

In my humble opinion, it would probably turn out essentially the same with mostly maris otter, a good whack of rolled oats (as they've done) and some wheat malt to round it out
 
Their grain bill seems unnecessarily complex. It's a bit like they tried to get a bit of everything in there that they've read/been told helps.
Flaked and malted wheat? Wouldn't just one or the other be fine, especially in such a small amount?
What's the role of carapils?
Lastly, why have mostly maris otter, and then chuck some golden promise in? Again, would it really be any different if it was just one or the other? (spoiler alert: it almost certainly wouldn't be).

In my humble opinion, it would probably turn out essentially the same with mostly maris otter, a good whack of rolled oats (as they've done) and some wheat malt to round it out
I thought they just copied a Verdant recipe...
 
Have you had customers/other brewers who have noticed a difference between flaked wheat and just plain wheat malt?
Sozz been offline for various reasons.

I have not noticed a difference to be honest between flaked wheat and Malted wheat in terms of customer feedback, ... with the brewbuilder recipes there are tweaks but they never remove the flaked wheat. If you had no flaked wheat, and subb'd malted wheat I think that would be OK. I think the oats flaked are important.

The feedback on the recipes are that they are very good. In fact they are responsible for converting many a beer lover to a beer brewer.

Cheers Steve
 
My advice on Neipa's is "don't".
I can't see the point in slavishly following every new USA fashion.
I prefer to drink beer, not cloudy hop juice.
I've got a friend who's trademark comment is "I'll try Anything once"
Guess this can be applied to brewing as well!
 
I'm not the biggest fan of the NEPIAS that have come my way, it could be that examples of really good ones don't travel well and I suspect even the best of then aren't very stable. Be nice if we all had a brewery close by making it fresh.
On the Wheat Malt/Flake question.
The main difference between what each brings to the beer is going to be the amount of high molecular weight proteins in the flaked wheat. HMW Proteins combine with Polyphenols to form haze. Starts as chill haze but with a lot in solution it will become permanent haze pretty quickly.
Most of the HMW Proteins are degraded to some extent during malting so if we use malted Wheat there will be less HMW Proteins available for haze formation. This is in addition to the smooth almost creamy texture flaked cereal can produce (mostly Glucans).
Paying a lot of attention during mashing should see good yields from flaked wheat (up to 80%), avoiding low temperature rests, (b-Glucanase and Protease) very patient lautering with mineralised and pH adjusted (perhaps a little higher than normal) sparge water... should see good extraction without harsh husk tannins affecting the flavour.
Mark
 
Back
Top